Hydrogen Production from Glycerol in a Membraneless Microbial Electrolysis Cell
نویسندگان
چکیده
منابع مشابه
Hydrogen gas production in a microbial electrolysis cell by electrohydrogenesis
Electrohydrogenesis is a bio-electrochemical process where organic material is microbially oxidized to protons and electrons, which in turn are reduced to form hydrogen gas (H2). The reactor in which these reactions occur is termed a microbial electrolysis cell (MEC). The microorganisms that colonize the anode are known as electricigens and behave as biological catalysts, significantly reducing...
متن کاملHydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells.
Microorganisms can produce hydrogen gas (H(2)) at high rates by fermentation of carbohydrates, but not from proteins. However, it is possible to produce H(2) at high rates and yields from proteins by electrohydrogenesis in microbial electrolysis cells (MECs). Hydrogen gas was generated using bovine serum albumin (BSA, 700 mg/L) in a single-chamber MEC at a rate of Q=0.42+/-0.07 m(3)/m(3)/day an...
متن کاملThe significance of key operational variables to the enhancement of hydrogen production in a single-chamber microbial electrolysis cell (MEC)
Microbial electrolysis cell (MEC) is one of the promising and cutting-edge technologies for generating hydrogen from wastewater through biodegradation of organic waste by exoelectrogenic microbes. In the MECs, the operational parameters, such as applied voltage (Eap), anode surface area, anode-cathode distance, and N2/CO2 volume ratio have a significant impact on the hydrogen yield and producti...
متن کاملHydrogen production in a single chamber microbial electrolysis cell lacking a membrane.
Hydrogen gas can be produced by electrohydrogenesis in microbial electrolysis cells (MECs) at greater yields than fermentation and at greater energy efficiencies than water electrolysis. It has been assumed that a membrane is needed in an MEC to avoid hydrogen losses due to bacterial consumption of the product gas. However, high cathodic hydrogen recoveries (78 +/- 1% to 96 +/- 1%) were achieve...
متن کاملHydrogen production by geobacter species and a mixed consortium in a microbial electrolysis cell.
A hydrogen utilizing exoelectrogenic bacterium (Geobacter sulfurreducens) was compared to both a nonhydrogen oxidizer (Geobacter metallireducens) and a mixed consortium in order to compare the hydrogen production rates and hydrogen recoveries of pure and mixed cultures in microbial electrolysis cells (MECs). At an applied voltage of 0.7 V, both G. sulfurreducens and the mixed culture generated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy & Fuels
سال: 2009
ISSN: 0887-0624,1520-5029
DOI: 10.1021/ef900357y